Computation of Homoclinic Solutions to Periodic Orbits in a Reduced Water-wave Problem

نویسنده

  • A. R. Champneys
چکیده

This paper concerns homoclinic solutions to periodic orbits in a fourth-order Hamiltonian system arising from a reduction of the classical water-wave problem in the presence of surface tension. These solutions correspond to travelling solitary waves which converge to non-decaying ripples at innnity. An analytical result of Amick and Toland, showing the existence of such homoclinic orbits to small amplitude periodic orbits in a singular limit, is extended numerically. Also, a related result by Amick and McLeod, showing the non-existence of homoclinic solutions to zero, is motivated geometrically. A general boundary-value method is constructed for continuation of homoclinic orbits to periodic orbits in Hamiltonian and reversible systems. Numerical results are presented using the path-following software auto, showing that the Amick{Toland solutions persist well away from the singular limit and for large-amplitude periodic orbits. Special account is taken of the phase shift between the two periodic solutions in the asymptotic limits. Furtermore, new multi-modal homoclinic solutions to periodic orbits are shown to exist under a transversal-ity hypothesis, which is veriied a posteriori by explicit computation. Continuation of these new solutions reveals limit points with respect to the singular parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Homoclinic Orbits in Partial Differential Equations: An Application to Cylindrical Shell Buckling

This paper concerns numerical computation of localised solutions in partial diier-ential equations (PDEs) on unbounded domains. The application is to the von KK armm an{Donnell equations, a coupled system of elliptic equations describing the equilibrium of an axially compressed cylindrical shell. Earlier work suggests that axially-localised solutions are the physically prefered buckling modes. ...

متن کامل

Convergence of Solitary-wave Solutions in a Perturbed Bi-hamiltonian Dynamical System. I. Compactons and Peakons

We investigate how the non-analytic solitary wave solutions — peakons and compactons — of an integrable biHamiltonian system arising in fluid mechanics, can be recovered as limits of classical solitary wave solutions forming analytic homoclinic orbits for the reduced dynamical system. This phenomenon is examined to understand the important effect of linear dispersion terms on the analyticity of...

متن کامل

Convergence of Solitary - Wave Solutions in Aperturbed Bi - Hamiltonian Dynamical

We investigate how the non-analytic solitary wave solutions | peakons and compactons | of an integrable biHamiltonian system arising in uid mechanics, can be recovered as limits of classical solitary wave solutions forming analytic homoclinic orbits for the reduced dynamical system. This phenomenon is examined to understand the important eeect of linear dispersion terms on the analyticity of su...

متن کامل

Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System

This paper investigates travelling wave solutions of the FitzHugh-Nagumo equation from the viewpoint of fast-slow dynamical systems. These solutions are homoclinic orbits of a three dimensional vector field depending upon system parameters of the FitzHugh-Nagumo model and the wave speed. Champneys et al. [A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd, When Shilnikov meets Hop...

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996